Na(+)/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: molecular characterization of SMCT.
نویسندگان
چکیده
We report an extensive characterization of the Na(+)/monocarboxylate transporter (SMCT), a plasma membrane protein that mediates active transport of monocarboxylates such as propionate and nicotinate, and we show that SMCT may play a role in colorectal cancer diagnosis. SMCT, the product of the SLC5A8 gene, is 70% similar to the Na(+)/I(-) symporter, the protein that mediates active I(-) uptake in the basolateral surface of thyrocytes and other cells. SMCT was reported in the apical surface of thyrocytes and formerly proposed also to transport I(-) and was called the apical I(-) transporter. However, it is now clear that SMCT does not transport I(-). Here we demonstrate a high-affinity Na(+)-dependent monocarboxylate transport system in thyroid cells, which is likely to be SMCT. We show that, whereas thyroidal Na(+)/I(-) symporter expression is thyroid-stimulating hormone (TSH)-dependent and basolateral, SMCT expression is TSH-independent and apical not only in the thyroid but also in kidney and colon epithelial cells and in polarized Madin-Darby canine kidney cells. We determine the kinetic parameters of SMCT activity and show its inhibition by ibuprofen (K(i) = 73 +/- 9 microM) in Xenopus laevis oocytes. SMCT was proposed to be a tumor suppressor in colon cancer. Significantly, we show that higher expression of SMCT in colon samples from 113 colorectal cancer patients correlates with longer disease-free survival, suggesting that SMCT expression may be a favorable indicator of colorectal cancer prognosis.
منابع مشابه
Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family.
SMCT (sodium-coupled monocarboxylate transporter; slc5a8) is a Na+-coupled transporter for lactate, pyruvate and short-chain fatty acids. Similar to these already known substrates of SMCT, the water-soluble B-complex vitamin nicotinic acid also exists as a monocarboxylate anion (nicotinate) under physiological conditions. Therefore we evaluated the ability of SMCT to mediate the uptake of nicot...
متن کاملSlowly digestible starch influences mRNA abundance of glucose and short-chain fatty acid transporters in the porcine distal intestinal tract.
The relationship between starch chemistry and intestinal nutrient transporters is not well characterized. We hypothesized that inclusion of slowly instead of rapidly digestible starch in pig diets will decrease glucose and increase short-chain fatty acid (SCFA) transporter expression in the distal gut. Weaned barrows (n = 32) were fed 4 diets containing 70% starch [ranging from 0 to 63% amylose...
متن کاملThe drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition.
Gamma-hydroxybutyric acid (GHB), a drug of abuse, is a substrate of monocarboxylate transporters (MCTs). Sodium-coupled monocarboxylate transporter 1 (SMCT1; SLC5A8) is expressed in kidney, thyroid gland, neurons, and intestinal tract and exhibits substrate specificity similar to that of the proton-dependent MCT (SLC16A) family. The role of SMCT1 in GHB disposition has not been determined. In t...
متن کاملChanges in monocarboxylate transporter 1 and p53 gene expression by aerobic interval training in the experimental colon carcinoma of mouse
Background: Recent evidence suggests that regular exercise training is effective in treating various aspects of cancer. Therefore, the purpose of this study was to determine the effect of 8 weeks of aerobic interval training on monocarboxylate transporter 1 (MCT1) protein and expression of p53 gene in tumor of colon cancer mice. Methods: The present study was conducted experimentally from May ...
متن کاملAnionic leak currents through the Na+/monocarboxylate cotransporter SMCT1.
SMCT1 is a Na-coupled cotransporter of short chain monocarboxylates, which is expressed in the apical membrane of diverse epithelia such as colon, renal cortex, and thyroid. We previously reported that SMCT1 cotransport was reduced by extracellular Cl(-) replacement with cyclamate(-) and that the protein exhibited an ostensible anionic leak current. In this paper, we have revisited the interact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 19 شماره
صفحات -
تاریخ انتشار 2006